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DIFFUSIONAL-ELECTRICAL PHENOMENA 
E L E C T R O L Y T E S  

N. N. Grinchik 

IN 

UDC 539.217.1+541.135+531.391.2:536.24 

For a macroscopic description of transfer processes it is suggested to use the equations of the thermodynamics 

of irreversible processes and the Poisson equation. With such an approach adopted, there is no necessity of 

introducing and determining the coefficients of molecular diffusion of cations and anions. 

The medium under discussion is assumed to consist of a non-ionized solvent, an electrolyte in the form of 

ions and uncharged components. At first we consider infinitely diluted electrolytes when molecules are completely 

dissociated into cations and anions. 

In a solution, ions are transferred by convection, diffusion, and migration in the presence of an electric field. 

Derivation of the equation for ion migration is based on the following considerations. In a solution with molar 

concentration n and diffusion coefficient D i let there be ions with charge zi. When an ion is exposed to an electric 

field with intensity E applied to the solution, the ion experiences the force zieE, which brings it into motion. The ion 

velocity is related to this force by the usual expression known for the motion of particles in a viscous medium: 

u ----- ~,~'zieE , (1) 

where 7~ is the ion mobility. The latter may be expressed in terms of the diffusion coefficient using the known Einstein 

relation: 

y~ D;F 
= (2) 

The total flux of ions of the i-th kind in a moving medium in the presence of diffusion and migration is determined 

by the Nernst-Planck equation: 

D i z f E  
qi = l~r2~[ ~ O i v l ~  i --71.-- - - '  tZ~, (3) 

RT 

Formulas (1) and (2) have, in fact, a limited sphere of applicability. Indeed, A. Einstein's work [1 ] is 

concerned only with the diffusion of a neutral impurity with its small concentration in a solution when the usual 

relations of hydrodynamics are valid for a flow around a sphere. 

In the physics of plasma, formulas (1) and (2) are based on other considerations and provided the plasma 

is weakly ionized, i.e., particles move independently of each other. Here, only the collision of charged particles with 

neutral ones is taken into account [2 ]. 

In [3, 4 ], for describing the diffusion and migration of ions in a partially dissociated electrolyte it is suggested 

to take into consideration their transfer by neutral molecules. In the theory developed by Yu. I. Harkats [3 ] the 

expression for the total flux of ions is 

D~z~EF 
qi ~- thv  ~ Divn~ - -  nl ~ Dzivn A. (4) 

RT 
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TABLE 1. The Degree of HC1 Electrolytical Dissociation in Terms of Measured Electric Conductivity a 1 and E.m.f. a2 

C H C  l, m o l e / l i a r  0 . 0 0 3  0 .08  0 .3  3 .0  6 . 0  16 .0  

a 1 0 . 9 8 6  0 . 9 5 7  0 . 9 0 3  - -  - -  - -  

a 2 0 . 9 9  0 .88  0 . 7 7 3  1 . 4 0 2  3 .4  13 .2  

The last term in (4) takes into account ion transfer by a flux of neutral molecules; here the concentrations 

of anions, cations, and neutral dissociated molecules are determined by the chemical equilibrium conditions 

(n~)~-" (n+)Z- (5) 

where fl is the dissociation equilibrium constant. If the 

is a, then nn -- (1-a)n and, consequently, 

t l  A 

degree of dissociation at the prescribed total concentration n 

~ =  a2n . (6) 

The dissociation constant r ,  unlike the degree of dissociation, must not depend on concentration. However, 

in real partially dissociated electrolytes those arguments for a and fl are in rather poor agreement with experiment. 

In [11 ] the dissociation degree for HC1 is listed in Table 1 as a function of concentrations, calculated in terms of 

measured electric conductivity a 1 and e.m.f, c~2. 
Inspection of the table reveals that the dissociation degrees obtained by different experimental methods 

coincide best in the case of dilute solutions. In the high-concentration range of the electrolyte, a 2 even exceeds unity, 

which, naturally, has no physical sense. 

According to the Arrhenius theory the dissociation constant fl for the given electrolyte at the prescribed 

temperature and pressure must remain constant independently of the solution concentration. In [5 ], the dissociation 

constants of some electrolytes are given at their different concentrations. Only for very weak electrolytes (solutions 

of ammonia and acetic acid) does the dissociation constant remain more or less constant on dilution. For strong 

electrolytes (potassium chloride and magnesium sulfate), it changes by severalfold and in no way may be considered 

a constant. 
Of course, one may formally take into account the dependence of the dissociation constant on the electrolyte 

concentration and use it in the modified Nernst-Planck equation (4), (5) but the main drawback in describing 

separately the diffusion and migration of ions in an electrolyte, in D. I. Mendeleev's opinion, lies in the fact that the 

interaction of particles of a dissolved substance between each other as well as with solvent molecules is neglected. 

Also, he has pointed out that not just the processes of formation of new compounds with solvent molecules are of 

importance for solutions. D. I. Mendeleev's viewpoints have been extended by A. I. Sakhanov [5 ], who believed that 

in addition to the usual dissociation reaction in an electrolyte solution there also proceeds associating of simple 

molecules. Molecular associations dissociate, in their turn, into complex and simple ions. In this case Eq. (4) will not 

hold mainly because of the fact that the expressions for diffusion, migration, and nondissociated flows of molecules 

must be determined relative to some mean liquid velocity. In concentrated solutions, this velocity does not coincide 

with the solvent velocity and must be determined from the fluid dynamics equations of a multicomponent mixture in 
which characteristics of its components (physical density, charge, diffusion coefficient of a complex ion) are, in fact, 

unknown. This is a reason why the theory of diffusion and migration of ions for a partially dissociated electrolyte 

solution, with a current traversing through it, encounters crucial difficulties. Besides, it is rather difficult to take an 

account of the force interaction of complex cations and anions between each other and with an external electric field. 

Therefore Einstein's formula (1) will also change its form. 
The main drawbacks of the theory of electrolytic dissociation are fully defined in collected papers 

"Fundamental Principles of Chemistry" by D. I. Mendeleev as well as in [5, 6 ]. 
In our opinion, the principal disadvantage of the approaches considered above lies in the fact that the 

Nernst-Planck equation as well as its modified form for a partially dissociated electrolyte (4) are based on the 
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hydrodynamic theory of diffusion. We shall substantiate below that it is more reasonable to use the equations of 

thermodynamics of irreversible processes. 

Macroscopic Electroneutrality of a Volumetric Electrolyte Solution. A typical feature of an electrolyte is its 

macroscopic neutrality due to mutual compensation of the space charge of cations and anions 

On___~ Onf 
Ox + div ( l ? e V e )  - -  - -  -Jr- div (niv i). (7) 

01: 

In order to preserve quasi-neutrality in sufficiently large volumes and for sufficiently long intervals of time, it is 

necessary for the concentrations of anions ne and cations ni to be equal, i.e., 

zet~e - -  zini = O. (8) 

The Poisson equation is more exact, which for a medium with constant permittivity e has the form 

1 
g 2 ( p  - -  - -  ( Z e n  e - -  Z i l l i ) "  (9) 

E E  0 

The Gibbs Paradox and Distinguishability of Cations and Anions in the Macroscopic Description of an 

Electrolyte Solution. The Gibbs paradox implies that no matter how close in their properties two somehow differing 

gases are, when mixed, the entropy is increased by one and the same quantity 2KN In 2, while no increase in entropy 

is observed in the case of two absolutely identical gases. Such a jump in the entropy behavior with a continuous 

transition from gases close in their properties but somehow differing to absolutely identical gases lies behind the 

Gibbs paradox. 

S. D. Haitun [7 ] singles out the following stages in solving the Gibbs paradox: thermodynamic, classical, 

statistical, informative, and "operational." 

The "operational" stage deals with the evolution of views about the dependence of the quantitative 

determination of entropy (in particular, entropy of mixing) on the observer and the capabilities of his experimental 

apparatus. Yu. S. Varshavskii and A. B. Sheinin [8, 91 were the first to derive an "operational" quantitative expression 

for the entropy of mixing which represents the dependence both on the properties of the gases to be mixed and on 

the measurement error of an "identifying" tool. As is noted in those works, a study of a system on a molecular level 

may be reduced to identification of all constituent particles in the system. A set of means, which could allow such 

study, is given the name [8, 9 ] "an identifying tool." If gases are identical, then the identifying tool is not capable 

of discerning the molecules, and the amount of information is equal to zero (AS = 0). If the tool identifies molecules 

correctly, then the probability of a molecule belonging to one of the components is 1 /2. If gases A and B are dissimilar 

but hardly discernible, i.e., similar to such extent that when the identifying tool is operating, there is a nonzero 

probability 3 of an error in which molecule A is identified as B and vice versa, then the uncertainty of this situation 

is determined by the Shennon informative entropy. The bulk of information I* produced by the investigation of 
molecules is related to entropy as AS -- KI*N In 2 [8, 9 ]; therefore 

AS = --2KN In 2 [~0 log2 c0 + (1 - -  co) logo. (1 mto)]. (10) 

From (10) it is seen that the limiting cases AS = 0 and AS = 2KN In 2 are easy to obtain for to --- 0 and to = 

1/2 (well-discernible gases). Formula (10) ensures a continuous transition between those limiting cases, thus 

overcoming the difficulties which the Gibbs paradox involves. 

When constructing the phenomenological theory of transfer processes in an electrochemical system, it is 

necessary to have the appropriate "identifying tool" to identify real flows of cations and anions. In practice, only 
observable flows (masses, charges, heat) are recorded; therefore it is conjectural even to pose the problem on 
discernibility of cations and anions in an electrolyte and treating them as independent components [101. 

Nevertheless, when applying the Nernst-Planck equation (3) and its modified forms (4), it is implicitly postulated 

that cations and anions in the electrolyte solution are different components. The equations of transfer of cations and 

anions are written separately. On the other hand, the commonly used equation of electroneutrality (8) does not 
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ensure, according to Gibbs [11 ], the independence of differentials of cations dni and anions dne; in a volumetric 

electrolyte solution their  changes are functionally related and therefore they are identical, indiscernible components. 

The Case of a Current  Traversing a Binary Fully Dissociated Electrolyte. Let us write system of equations 
(3) in the form 

art  e 

O'v 

ant 

Or 

~ + v g r a d n e = D ~ A n , +  - -  
zeFD~ 

RT 

+ v g r a d n i  = D i A n i +  - -  

div(neE), (11) 

z~FD~ div (hiE), (12) 
RT 

zene--z~n~=O. (13) 

Analogously to [11 ], instead of concentrations n e and ni we introduce the molar concentration related to n e and ni 

by the expressions 

C .... n~ _ ni (14) 

Zl Z e 

Expressing n e and n i in Eqs. (11) and (12) in terms of the molar concentration, we arrive at the following expression 

for the function C: 

aC 
- - - -  -t- v v C  == DefAC, (15) 

O'c 

where 

De f = D~Di(ze+zi) 
zeDe + ztDi (16) 

is the diffusion coefficient of a salt or the effective diffusion coefficient of a binary electrolyte. Expressing the 

concentrations n e and n i in terms of the molar concentration C we find the expression for the vector of current  density 

J [12]: 

J=(Di--De) FZlzevCq Feziz~ (z~D~ + z~D~) CE. (17) 
RT 

In [13 ] it is shown that by its meaning Def is a coefficient of molecular diffusion. For instance, the diffusion 

coefficients of copper sulfate have an intermediate value between the diffusion coefficients of copper and sulfate ions; 

i f  D e -- 0.173 �9 10 -9 mZ/sec and D i = 1.065.  10 -9 mZ/sec, then Def = 0.854 �9 10 -9 m2/sec.  However, expression (16) 

does not offer an explanation of the abnormally high mobility of H and OH' ions when their  displacement proceeds 

by a croquet-like mechanism [ 14 ]. 

In system of equations (15)-(17) no symmetry of cross terms is observed; therefore it is difficult to take into 

account " the superposition effects." Indeed,  from Eq. (17) it is evident that the molar concentration gradients VC 

exert  an influence on the current  J. On the other hand, one can see from Eq. (15) that an electric field has no effect 

on the diffusion of the molecules, and therefore the Onsager reciprocal relation is disturbed. 

One may raise the objection that according to the Nernst-Planck equations it follows that the concentration 

gradients of cations and anions exert  an influence on the potential distribution of an electric field [12 ]: 

V (P~Vq ~) = - -  F ~ z7 (D~TCi) (18) 
i 

However relation (18) itself has been derived by Neumann [13 ] on the assumption that the resultant  current 

does not depend on the mass flow. 
On derivation of the equations for diffusion and migration of ions in a volumetric electrolyte solution we shall 

employ the relations of the thermodynamics of irreversible processes. 
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Finally, it is worthy of note that in plasma physics there is also no symmetry of "the superposition effects" 

in describing the ambipolar diffusion of ions, and the theory is based on the hydrodynamic model [2 ]. 

In our opinion, electric field-induced transfer of charges entails transfer of their kinetic energy as well as of 

heat and mass, and conversely, mass or heat transfer may simultaneously cause, if we are concerned with the system 

of charged particles, charge transfer and give rise to an electromotive force. 

The Equations of Electric Current-Induced Diffusion and Migration of Ions in a Volumetric Electrolyte 

Solution. For a macroscopic description of transfer processes in an electrolyte we shall use the equations of the 

thermodynamics of irreversible processes, which for conjugated flows and forces are of the form 

(19) 

J = - - L . ~ t V  n - L a 2 v  ( T ] 1  ~.__Laav~, 

where L21 - L12, Lal - Lla, La2 = L2a. Let D - Lll be the molecular diffusion coefficient of an impurity; A -- L22/T 2 

the thermal conductivity; RR = Laa the electric conductance of an electrolyte; DA -= Lla the ambipolar diffusion 

coefficient; DT -- L12 the thermodiffusion coefficient. 

The total flow of impurity with an account of convection may be written as 

qs : nv l - -  DVt~ - D AV% (20) 

where qs is the salt flow; Vl is the liquid velocity. 

The current with an account of the space charge is 

J = qv l - -  pRvq) @ DAVn. (21) 

Then considering (21), the equations of nonstationary mass and charge transfer are (provided div Vl -- 0) 

0/2 
dz -t- v / v n  div (Dvn) - -  div (DAvrP), 

Oq 
~)~ Vl vq = div (p~vrp) ~- div (DAvn). 

(22) 

(23) 

It is necessary to supplement Eqs. (22), (23) with the Poisson equation 

V 2 (es,~p) ,= --q. (24) 

The dielectric permittivity of the solution may be substantially changed near electrodes or membranes. In 

this case a space charge emerges and a double electric layer is formed. In a volumetric solution, the electroneutrality 

condition is, as a rule, fulfilled with a high accuracy; therefore it will be assumed hereafter that condition (8) is 

fulfilled and, consequently, div(J) --- 0. In this case Eqs. (22) and (23) are simplified to acquire the form 

+ v / y n  = (Dvn) • div (DAV(p), (25) 
d~ 

J = PR (n) Vr • D A v n  (26) 

or  

div (ORVr • div (DAVn) ~- O. (27) 

For Eqs. (25) and (26) the corresponding boundary conditions are to be set. Their choice will be based on the Faraday 
laws. In the one-dimensional form they are as follows: 

initial conditions: 
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boundary conditions: 

~c=0, n(x, 0)=no, E(x, 0 )=E,  (28) 

x --= 0 qsJx=c -~ JnA, (29) 

x ---- 1 qstx_:,l ----- Jtzt~, (30) 

where nA, nk are the electrochemical equivalents of the products of electrolysis liberated at the anode and the cathode. 

In order to take into consideration the parallel and secondary reactions, the notion of current efficiency has been 

introduced, which must be accounted for in conditions (29), (30). 

In some cases the prescribed current J (T) is passed through an electrolytic cell. In that case for time Ar a 

new value of n and conductance pR(n) is determined, while from the equation 

J DA (31) 
E = V n 

PR PR 

the electric intensity across the cell is determined. Often the potential difference applied between electrodes in an 

electrochemical cell is preset. Then after calculating new concentration values for some moment of time, new values 

of current must be determined, which is constant in an electrochemical cell. 
To determine transfer characteristics, i.e., D (molecular diffusion coefficient), DA (ambipolar diffusion 

coefficient), PR (conductance), it is necessary to use the methods of solving inverse problems and to have the 

necessary experimental information on the observed parameters q(r, r), n(r, T), E(r, ~). 
In the case of diffusion in concentrated mixtures, mechanical equilibrium may be disturbed, and the mixture 

is transferred as a whole; therefore it is necessary to use the Navier-Stokes equation, namely, 

0 ~ + ( v v )  v -------vP-~-rl h v - t - ~ v ( d i v v )  . (32) 

In system of Nernst-Planck equations (3), (4) ni indicates the molar concentration of an electrolyte but as 

has been mentioned above, in real solutions not molecules but their associates dissociate, whose characteristics are, 

as a rule, unknown. 
L. D. Landau was the first to describe diffusional-electrical phenomena in terms of the thermodynamics of 

irreversible processes without considering molecular diffusion of cations and anions as well as limitations on the 

electrolyte concentration [ 151. 
Numerical Simulation of an Electric Current Passing through a Partially Dissociated Electrolyte with an 

Account of Concentration Polarization. Of interest is the influence of cross terms on diffusion and migration of ions 

in an electrolyte with a current passing through it. We consider a partially dissociated HC1 solution in water. A 

constant current is passed through the electrolyte. 
With an account of the results obtained earlier in the one-dimensional statement, we have the following 

system of equations: 

O'c Ox Ox 

On (34) 
J : = P R E  §  Ox 

Boundary conditions are as follows: 
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"1:--,0 n.(x, 0) =- no, J = const, (35) 

x = 0 qslx=0 = JrtA, (36) 

x = 1 qsl:,_-i = Jnh. (37) 
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Fig. 1. Concentration field on ~assing a constant current through the electrolyte: 
a) C = 30 kg/m a, J = 50 A/m : 1) T = 0.29 �9 105 sec, 2) 0.38 �9 105; b) C = 50 
kg/m a, J = 500 A/m2: 1) T = 0.5 �9 104 sec, 2) 0.45 �9 10s; c) C = 20 kg/m 3, J = 5 
A/mX: 1) T =0.4 �9 105 sec, 2) 0.198 �9 106; d) C =50 kg/m 3, J = 50 A/m::  1) T 
--- 0.1875 �9 10 s sec, 2) 0.69 �9 105. Solid lines: DA = 0.1 �9 109 A/(m. kg) ; dashed 
lines: DA = 0. 

According to [ 14 ] we may write the diffusion coefficient of HC1 as 

( 1 nm'} Di-mt : :  3,07 + ~ .10-9 m2/sec (38) 

The dependence of conductance on electrolyte concentration is as follows according to [14 ]: 

PR = (40 + 7nm~. 10 ~ 1/( f~. m ). (39) 

We emphasize once more that using the Nernst-Planck equation and the electroneutrality, one fails to obtain 

an additional term in Eq. (33). 

To elucidate the influence of ambipolar diffusion, calculations have been made in two variants: DA = 0 

(dashed lines in Fig. 1) and DA = 0.1-10 -9 A/(m.kg) (solid lines). Inspection of the figure reveals that at current 

densities higher than 5 Aim 2, the contribution of the ambipolar diffusion is significant. The coefficient DA should 

be determined experimentally since its theoretical values point only to an order of magnitude. 

Conclusion. To phenomenologically describe diffusional-electrical phenomena in electrolytes it is suggested 

to use the methods of the thermodynamics of irreversible processes, rather than the hydrodynamic theory of diffusion 

of ions, for the experimentally observable thermodynamic flows and forces without clear discernment and 
identification of real ion flows and mobilities. 

N O T A T I O N  

D, molecular diffusion coefficient, m2/sec; Di, diffusion coefficients of anions and cations, m2/sec; DA, 
ambipolar diffusion coefficient, A/(m.kg);  F, Faraday's constant, 96.985 C/eq.; J, current density, A/m2; R, 

universal gas constant; n, concentration, kg/m3; n A, concentration of neutral molecules, kg/m3; ni, concentration of 

dissociated molecules, kg/m3; nm, molar concentration, g. eq./liter; E, electric field intensity/5, equilibrium constant; 

a, degree of dissociation; e, dielectric constant; k, Boltzmann constant; pR, conductance. 
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